

| 번호 | 논문 제목                                                                                                                                             | 핵심 키워드                                                                                                                                          | 시험 물질                                     | 실험 모델                                                                                                                                                        | 주요 바이오마커                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Suppressive Effect of <i>Arctium lappa</i> L. Leaves on Retinal Damage against A2E-Induced ARPE-19 Cells and Mice                                 | <i>Arctium lappa</i> L. leaves; age-related macular degeneration; A2E accumulation; A2E-induced cell death; apoptosis                           | extract of <i>Alleaves</i> ( <i>ALE</i> ) | ARPE-19 cells / By A2EBALB/c mice / By white light                                                                                                           | <ul style="list-style-type: none"> <li>- Cell viability</li> <li>- Relative of A2E level</li> <li>- Cell apoptosis</li> <li>- H&amp;E staining</li> <li>- Stained region in ONL layer</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2  | Effect of Photooxidation of A2E, a Lipofuscin in the Retina, induced by Smartphone Light Against the Photooxidation by Blue Light Blocking Lenses | Age-related macular degeneration (AMD), Lipofuscin in retina, A2E and iso-A2E, Blue light blocking tinted lens, Blue light blocking coated lens | 스마트 폰 빛 조사                                | 스마트폰에서 발생하는 빛 조사 전후의 형광색소 물질의 양 & 다양한 청광 차단 안경렌즈를 사용하였을 때 차이를 형광색소 물질의 흡광도를 통하여 확인                                                                           | <ul style="list-style-type: none"> <li>- 스마트폰으로 유발되는 A2E와 iso-A2E의 광산화 효과</li> <li>- A2E와 iso-A2E의 항광 산화에 미치는 청광 차단 렌즈의 효과</li> <li>- 시간에 따른 청광 차단 렌즈의 항광 산화 효과</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3  | Macular Pigment Optical Density and Photoreceptor Outer Segment Length as Predisease Biomarkers for Age-Related Macular Degeneration              | macular pigment; photoreceptor; age-related macular degeneration; retina; medical checkup; biomarker                                            | Not applicable                            | Thirty AMD fellow eyes of 30 late AMD patients (22 men; mean age, 68.2 1.8 years; range 50–5 years) and 30 eyes of control patients                          | <ul style="list-style-type: none"> <li>- Macular pigment optical density (MPOD) and photoreceptor outer segment (PROS) length</li> <li>- Correlation between macular pigment optical density (MPOD) and photoreceptor outer segment (PROS) length</li> <li>- Scatter diagram of macular pigment optical density(MPOD) and photoreceptor outer segment (PROS) length</li> <li>- Representative optical coherence tomography (OCT) images of control and age-related macular degeneration (AMD)-fellow eyes</li> </ul>                                                                                        |
| 4  | Positive Association between Macular Pigment Optical Density and Glomerular Filtration Rate: A Cross-Sectional Study                              | macular pigment optical density; estimated glomerular filtration rate; age-related macular degeneration                                         | Not applicable                            | 137 patients aged 60 years or older were diagnosed with grade 2 or higher-grade nuclear opacifications based on the Lens Opacities Classification System III | <ul style="list-style-type: none"> <li>- Study design flow diagram</li> <li>- Simple linear analysis between MPOD and eGFR</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5  | Protective effects of <i>Vaccinium uliginosum</i> L. fractions and its compounds on dry age-related macular degeneration                          | <i>Vaccinium uliginosum</i> L., age-related macular degeneration(AMD), A2E, blue light exposure, HP20 resin                                     | <i>Vaccinium uliginosum</i> L. (V.U)      | ARPE-19 cells / By blue lightBALB/c mice / By blue light                                                                                                     | <ul style="list-style-type: none"> <li>- Representative HPLC chromatogram (330 nm) of fruit extract of <i>Vaccinium uliginosum</i> L. and UV spectra</li> <li>- V.U extract (VE) and 70% EtOH (FE) and fraction of HP20 resin (FH) on A2E oxidation and A2E-laden ARPE-19 cell death from blue light induced damage</li> <li>- Effect of V.U single compound on A2E-oxidation and A2E-laden ARPE-19 cell death from blue light induced damage</li> <li>- ONL thickness &amp; Nuclei of ONL</li> </ul>                                                                                                       |
| 6  | <i>Prunella vulgaris</i> var. L extract protects blue light induced RPE cell death in vitro and in vivo                                           | <i>Prunella vulgaris</i> var. L, age-related macular degeneration (AMD), A2E, blue light exposure, oxidative stress, inflammation               | <i>Prunella vulgaris</i> (P.V) extract    | ARPE-19 cells / By blue lightBALB/c mice (5weeks) / By blue light                                                                                            | <ul style="list-style-type: none"> <li>- Inhibitory effect of P.V extract on A2E oxidation in cell free system from BL</li> <li>- cell viability</li> <li>- P.V extract inhibits A2E accumulation</li> <li>- P.V extract inhibits BL induced apoptosis in ARPE-19 cells</li> <li>- P.V extract activates Nrf-2/HO-1 signaling pathway and inhibits BL induced inflammation in ARPE-19 cells</li> <li>- HNE staining, thickness, protein expression( NF-<math>\kappa</math>B p65 and I<math>\kappa</math>B alpha), mRNA expression(TNF-alpha, MCP-1, MMP-2, MMP-9, VEGF-alpha, IL-1beta and IL-6)</li> </ul> |

| 번호 | 논문 제목                                                                                                                                 | 핵심 키워드                                                                                                       | 시험 물질                        | 실험 모델                                                                           | 주요 바이오마커                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7  | 들쭉 추출물의 노인성 황반변성증에 관한 예방효과 A2E 축적된 ARPE-19 세포와 C57BL/6 mice의 망막에서 광 손상에 대한 들쭉 추출물의 보호 효능                                              | Age-related macular degeneration (AMD), Vaccinium uliginosum L., A2E, ARPE-19 cells, Blue light              | Vaccinium uliginosum L.      | ARPE-19 cells / By UV AC57BL/6 Male, mice (11months) / By blue light            | <ul style="list-style-type: none"> <li>- antioxidant effect of V.U</li> <li>- cell viability</li> <li>- Inhibitory effects of A2E accumulation in V.U extract</li> <li>- H&amp;E staining</li> <li>- Nuclei of ONL per 100um, Thickness of ONL</li> <li>- Transmission electron microscopic analysis of lipofuscin</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                  |
| 8  | レスベラ트롤 및 그 유도체를 이용한 노인성 황반변성증에 대한 보호 효과                                                                                               | Age-related macular degeneration (AMD) Resveratrol, AntioxidantAnti-inflammatory, Retinal pigment epithelium | レスベ라트롤 및<br>レスベ라트롤 배당체       | ARPE-19 cells / By 청색광 (430nm)                                                  | <ul style="list-style-type: none"> <li>- cell viability</li> <li>- Inhibitory action of RES and PIC against A2E photooxidation</li> <li>- Protective effect of RES and PIC against A2E accumulation induced damage on ARPE-19 cells</li> <li>- Protective effects of RES and its glycones against blue light induced photodamage on ARPE-19 cells</li> </ul>                                                                                                                                                                                                                                                                                                                                                   |
| 9  | Protective effects of Panax ginseng berry extract on blue light-induced retinal damage in ARPE-19 cells and mouse retina              | Panax ginseng berry<br>Age-related macular degeneration<br>Blue light exposure<br>A2E ARPE-19 cells          | ginseng berry extract (GBE)  | ARPE-19 cells / By blue light (430nm) Balb/c mice (5weeks) / Blue light (430nm) | <ul style="list-style-type: none"> <li>- GBE inhibits cell death induced by A2E treatment and blue light exposure in ARPE-19 cells</li> <li>- GBE activates SIRT1/PGC-1a signaling pathway and inhibits BL induced inflammatory response in A2E-laden ARPE-19 cells</li> <li>- GBE inhibits apoptosis and restores the inhibition of autophagic flux induced by BL exposure in A2E-laden ARPE-19 cells</li> <li>- GBE protects BL induced retinal degeneration in retina (ONL Thickness)</li> <li>- GBE activates SIRT1/PGC-1a signaling pathway and inhibits BL induced inflammatory response in retina (gene expression(SIRT1, PGC-1a, TNF-a, IL-1b) western blot(SIRT1, PGC-1a, NF-kB, Lamin B1)</li> </ul> |
| 10 | Protective Effects of Spirulina maxima against Blue Light-Induced Retinal Damages in A2E-Laden ARPE-19 Cells and Balb/c Mice          | Spirulina maxima; age-related macular degeneration; A2E; blue light; inflammation; oxidative stress          | Spirulina maxima (S. maxima) | ARPE-19 cells / By blue light (430nm) Balb/c mice (5weeks) / Blue light (430nm) | <ul style="list-style-type: none"> <li>- S.maxima inhibited celld death caused by A2E treatment and BL exposure</li> <li>- S.maxima regulated the inflammatory response caused by BL in A2E-laden ARPE-19 cells (western blot: NF-kb, Lamin B, iKb-b)</li> <li>- S.maximaRegulatedtheApoptosisCausedbyBLinA2E-LadenARPE-19Cells (PARP, caspase 3)</li> <li>- S. maxima protected photoreceptor degeneration caused by BL in retina (H&amp;E staining, ONL Thickness)</li> <li>- S. maxima regulated the inflammation and apoptosis caused by BL in retina (TNF-, CXCL-2, MCP-1, MMP-2, MMP-9, VEGF-A, IL-1, and IL-6)</li> </ul>                                                                               |
| 11 | Long-term blue light exposure impairs mitochondrial dynamics in the retina in light-induced retinal degeneration in vivo and in vitro | Dry age-related macular degeneration RPE cells<br>Blue light Oxidative stress Mitochondrial dynamics         | Not applicable               | C57BL/6 mice (6month) / blue light (800lx)                                      | <ul style="list-style-type: none"> <li>- Effects of long-term blue light exposure on the retina in C57BL/6 mice (HE staining, Thickness, TUNEL)</li> <li>- Alterations in mitochondrial structure and dynamics-related markers in mice exposed to blue light (DRP1, OPA1, OMA1)</li> <li>- Cytotoxicity Induced by Blue Light in ARPE-19 Cells (cell viability)</li> <li>- ROS Generation in ARPE-19 Cells Exposed to Blue Light</li> <li>- Mitochondrial dynamics were destroyed by blue light in ARPE-19 cells (OPA1, Bcl-2, BAX)</li> </ul>                                                                                                                                                                 |

| 번호 | 논문 제목                                                                                                                                                | 핵심 키워드                                                                                                                                               | 시험 물질                                | 실험 모델                                                                                                 | 주요 바이오마커                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12 | 초기 황반변성 환자에서 들쭉 추출물의 효과                                                                                                                              | Age-related macular degeneration (AMD), <i>Vaccinium uliginosum</i> L., A2E (N-retinyl-N-retinylidene ethanolamine) ARPE-19 cells, Blue light        | 들쭉나무 ( <i>Vaccinium uliginosum</i> ) | 초기 황반변성은 AREDS 그룹의 분류에 의한 early AMD(AREDS category 2) & intermediated AMD (AREDS category 3)에 해당하는 환자 | <ul style="list-style-type: none"> <li>- Retinal thickness between RPE and IS/OS junction was measured at the foveal RPE and IS/OS thickness and foveal thickness</li> <li>- Survey questions of subjective symptoms</li> <li>- Analysis of the rate of change in study group and control group</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 13 | In Vivo Multimodal Imaging of Drusenoid Lesions in Rhesus Macaques                                                                                   | Drusenoid lesions, Rhesus macaques, Age-related macular degeneration (AMD) Multimodal imaging, Spectral domain optical coherence tomography (SD-OCT) | Not applicable                       | rhesus macaques ( <i>Macaca mulatta</i> ) (>19years)                                                  | <ul style="list-style-type: none"> <li>- Grading and quantification of drusenoid lesions in rhesus macaques from fundus photographs</li> <li>- Multimodal imaging of soft drusen in rhesus macaques</li> <li>- Multimodal imaging of hard punctate lesions in rhesus macaques</li> <li>- Image segmentation and thickness measurement of retinal and choroidal layers in rhesus macaques</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 14 | Drusen, choroidal neovascularization, and retinal pigment epithelium dysfunction in SOD1-deficient mice: A model of age-related macular degeneration | animal model; superoxide dismutase                                                                                                                   | Not applicable                       | Sod1 $^{-/-}$ C57BL/6 mice / By light                                                                 | <ul style="list-style-type: none"> <li>- Senescent Sod1 <math>^{-/-}</math> mice showing drusen</li> <li>- Degenerated RPE and thickened Bruch's membrane in Sod1 <math>^{-/-}</math> mice</li> <li>- CNVs in Sod1 <math>^{-/-}</math> mice</li> <li>- Expression of SOD1, SOD2, and SOD3 in the eyes of Sod1 <math>^{-/-}</math> mice</li> <li>- Oxidatively damaged RPE and its disrupted <math>\beta</math>-catenin-mediated integrity in Sod1 <math>^{-/-}</math> mice</li> </ul>                                                                                                                                                                                                                                                                                                                                                                             |
| 15 | REV-ERB $\alpha$ regulates age-related and oxidative stress-induced degeneration in retinal pigment epithelium via NRF2                              | Retinal pigment epithelium Aging Age-related macular degeneration REV-ERB $\alpha$ Oxidative damage NRF2                                             | SR9009                               | WT and Rev-erba $^{-/-}$ mice (12month)                                                               | <ul style="list-style-type: none"> <li>- REV-ERB<math>\alpha</math> declines in aging RPE and sub-retinal deposits increase in Rev-erba <math>^{-/-}</math> mice</li> <li>- RPE degeneration in Rev-erba <math>^{-/-}</math> eyes (BrM thickness)</li> <li>- REV-ERB<math>\alpha</math> deficiency decreases RPE phagocytic activity</li> <li>- Rev-erba <math>^{-/-}</math> eyes are more sensitive to chemical-induced oxidative stress injury</li> <li>- REV-ERB<math>\alpha</math> agonist protects against chemical (NaIO3)-induced RPE damage</li> <li>- REV-ERB<math>\alpha</math> regulates NRF2(Nfe2l2) transcription and the expression of its downstream target antioxidant genes in RPE cells</li> <li>- RPE-specific knockout of REV-ERB<math>\alpha</math> in mice shows similar ocular pathologies as Rev-erba <math>^{-/-}</math> mice</li> </ul> |
| 16 | Retinal pigment epithelium-specific CLIC4 mutant is a mouse model of dry age-related macular degeneration                                            | Age-related macular degeneration (AMD), Retinal pigment epithelium (RPE), CLIC4 (Chloride intracellular channel 4) Drusen, Lipid metabolism          | Not applicable                       | C57BL/6 J mice (Clic4 f/f mice16 and Best1-Cre+/-mice)                                                | <ul style="list-style-type: none"> <li>- RPE<math>\Delta</math>Clic4 mice developed age-related vision loss</li> <li>- RPE<math>\Delta</math>Clic4 mice progressively develop histopathological features resembling intermediate and advanced AMD</li> <li>- Young RPE<math>\Delta</math>Clic4 mice had altered epithelial cell features and increased RPE dropout</li> <li>- CLIC4 deficiency causes transcriptomic reprogramming and pathway changes in RPE cells</li> <li>- RPE<math>\Delta</math>Clic4 mice have aberrant and age-related lipids, lipoproteins, and protein depositions at sub-RPE/BrM</li> <li>- RPE lipid transport, BrM lipid deposition &amp; disease summary for RPE<math>\Delta</math>Clic4 mice</li> </ul>                                                                                                                             |

| 번호 | 논문 제목                                                                                                                        | 핵심 키워드                                                                                                                                                        | 시험 물질          | 실험 모델                                                                                                          | 주요 바이오마커                                                                                                                                                                                                                                                                                                                                                           |
|----|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17 | Relationship Between Drusen Height and OCT Biomarkers of Atrophy in Non-Neovascular AMD                                      | AMD, atrophy, OCT, druse, drusen                                                                                                                              | Not applicable | 155 patients with drusen associated with intermediate AMD                                                      | <ul style="list-style-type: none"> <li>- Drusen Characteristics Across All Eyes</li> <li>- Optical coherence tomography (OCT) B-scans from seven separate cases and one control case of macular drusen</li> <li>- Frequency and Location of OCT Biomarkers of Atrophy Within the Same Eye</li> <li>- Relationship Between Height and Diameter of Drusen</li> </ul> |
| 18 | Drusen Volume as a Predictor of Disease Progression in Patients With Late Age-Related Macular Degeneration in the Fellow Eye | macular degeneration, geographic atrophy, wet macular degeneration, retinal drusen, choroidal neovascularization, optical coherence tomography, drusen volume | Not applicable | 89 patients who had neovascular AMD in only one eye                                                            | <ul style="list-style-type: none"> <li>- baseline drusen volumes for eyes that developed late AMD at 1 year</li> <li>- baseline drusen volumes for eyes that developed late AMD at 2 year</li> <li>- Central OCT scans of a fellow eye at baseline, month 12, and month 24 of follow-up</li> </ul>                                                                 |
| 19 | Drusen volume development over time and its relevance to the course of age-related macular degeneration                      | Age-related macular degeneration (AMD) Drusen volume, Optical coherence tomography (OCT) Disease progression, Retina                                          | Not applicable | 109 patients presenting early and intermediate age-related macular degeneration (AMD)                          | <ul style="list-style-type: none"> <li>- Calculating the drusen volume growth model</li> <li>- Bland-Itman plot showing the agreement between the drusen volume measurements</li> <li>- Development of drusen volume of all eyes during study period</li> </ul>                                                                                                    |
| 20 | Association of Visual Function Measures with Drusen Volume in Early Stages of Age-Related Macular Degeneration               | Automatic segmentation of drusen, drusen volume, age-related macular degeneration, contrast sensitivity                                                       | Not applicable | A total of 100 eyes (16 eyes with early AMD, 62 eyes with intermediate AMD, and 22 eyes from healthy controls) | <ul style="list-style-type: none"> <li>- Sociodemographic and Clinical Characteristics of the Participants</li> <li>- Relationship Between Drusen Volume and Visual Function Tests</li> </ul>                                                                                                                                                                      |
| 21 | Observational Study in Drusen Patients with Epiretinal Membrane after Vitrectomy and Membrane Peeling                        | Central foveal thickness, Drusen, Drusen size, Epiretinal membrane, Vitrectomy                                                                                | Not applicable | 드루젠과 함께 황반전막이 있는 환자 20안과 드루젠이 없는 황반전막이 있는 환자 25안                                                               | <ul style="list-style-type: none"> <li>- Baseline characteristics</li> <li>- Pattern of BCVA (logMAR) at preoperative and in the postoperative period, in both subgroups</li> <li>- Mean change of central foveal thickness</li> </ul>                                                                                                                             |
| 22 | Extramacular Drusen and Progression of Age-related Macular Degeneration (AMD); Age-related Eye Disease Study 2 Report 30     | Age-related macular degeneration (AMD) Extramacular drusen Disease progression, Age-Related Eye Disease Study 2 (AREDS2) Geographic atrophy                   | Not applicable | 4168 eyes (2998 participants) with intermediate AMD in one or both eyes                                        | <ul style="list-style-type: none"> <li>- Field 2 macula centered fundus photograph with macular grid overlay</li> <li>- Extramacular drusen were not associated with risk of progression to late AMD</li> <li>- Characteristics of Extramacular Drusen</li> </ul>                                                                                                  |

| 번호 | 논문 제목                                                                                                                        | 핵심 키워드                                                                                                                                                                  | 시험 물질          | 실험 모델                                                                                                                                                                                                           | 주요 바이오마커                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 23 | 건강검진 자료를 이용한 나이관련황반변성의 위험인자 분석                                                                                               | Age-related macular degeneration, Check-up, Fundus photography, Risk factor                                                                                             | Not applicable | 104 patients with early-phase, 75 patients with intermediate-phase, and 4 patients with late-phase AMD                                                                                                          | <ul style="list-style-type: none"> <li>- Comparison of baseline characteristics between 4 groups with normal, early AMD, intermediate AMD, late AMD</li> <li>- Comparison of average values between normal and AMD groups after propensity score matching for age and sex</li> <li>- Logistic regression analysis of factors which showed meaningful relationships with AMD</li> </ul>                                                                                                                                                                                                                                                                                           |
| 24 | Are macular drusen in midlife a marker of accelerated biological ageing?                                                     | Macular drusen, Leukocyte telomere length, DNA methylation age acceleration, Epigenetic clock, Retinal vessel caliber                                                   | Not applicable | 1037 participants                                                                                                                                                                                               | <ul style="list-style-type: none"> <li>- Fundus photographs showing macular drusen (right eye) and without drusen (left eye)</li> <li>- Pace of ageing of participants with drusen (N = 165) and without drusen (N = 669)</li> <li>- Pace of ageing of participants with no drusen (N = 669), with drusen in one eye (N = 61), and with drusen in both eyes (N = 104)</li> </ul>                                                                                                                                                                                                                                                                                                 |
| 25 | 스펙트럼 영역 빛간섭단층촬영 결과에 영향을 주는 다양한 인자 분석                                                                                         | 스펙트럼 영역 빛간섭단층촬영 (Spectral domain optical coherence tomography, SD-OCT) 황반 두께 (Macular thickness) 망막신경섬유층 두께 (Retinal nerve fiber layer thickness)                       | Not applicable | 최대 교정시력 0.6 이상이며, 세극등 검사와 안전 검사상 이상이 없는 196명                                                                                                                                                                    | <ul style="list-style-type: none"> <li>- Baseline characteristics of subjects</li> <li>- ETDRS subfields within standard 1-, 3-, and 6-mm-diameter concentric circles at the right used for reporting retinal thickness</li> <li>- Macular subfield thicknesses and retinal nerve fiber layer thicknesses stratified by sex</li> <li>- Macular subfield thicknesses and retinal nerve fiber layer thicknesses stratified by laterality</li> <li>- Correlations between OCT measurements and age, spherical equivalent, and signal strength</li> </ul>                                                                                                                            |
| 26 | Evaluation of retinal pigment epithelium changes in serous pigment epithelial detachment in age-related macular degeneration | Age-related macular degeneration (AMD) Retinal pigment epithelium (RPE) Pigment epithelial detachment (PED) Multi-contrast optical coherence tomography RPE-melanin OCT | Not applicable | 26 eyes of 21 Japanese patients with serous PEDs due to AMD (13 men, 8 women; age range, 55–3 years; mean age, 72.1 years)                                                                                      | <ul style="list-style-type: none"> <li>- Multimodal imaging of serous PED in the right eye of a 78-year-old man</li> <li>- Multimodal imaging of serous PED in the right eye of a 70-year-old man</li> <li>- Scatterplots of RPE70 areas or area ratios and morphometric PED parameters with statistically significant correlations</li> </ul>                                                                                                                                                                                                                                                                                                                                   |
| 27 | Natural History of Drusenoid Pigment Epithelial Detachment in Age-Related Macular Degeneration: AREDS Report Number 28       | Age-related macular degeneration (AMD) Drusenoid pigment epithelial detachment (DPED) Natural history Age-Related Eye Disease Study (AREDS) Disease progression         | Not applicable | 4757 participants enrolled in the Age-Related Eye Disease Study (AREDS), 255 were identified as having DPED in at least one eye and having 5 or more years of follow-up after the initial detection of the DPED | <ul style="list-style-type: none"> <li>- Progression of study eyes with drusenoid pigment epithelial detachments (DPED) to advanced forms of age-related macular degeneration (AMD)</li> <li>- Natural history of fundus changes in eyes with drusenoid pigment epithelial detachments (DPEDs) not progressing to advanced forms of age-related macular degeneration (AMD) by 5 years (n = 163)</li> <li>- Fundus changes occurring in the left eye of a 73 year-old woman with a drusenoid pigment epithelial detachment (DPED) at baseline</li> <li>- Change in best corrected visual acuity over time in eyes with drusenoid pigment epithelial detachments (DPED)</li> </ul> |

| 번호 | 논문 제목                                                                                                                                           | 핵심 키워드                                                                                                                                                                                                                | 시험 물질                                                    | 실험 모델                                                                                                                                          | 주요 바이오마커                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 28 | Activated Retinal Pigment Epithelium, an Optical Coherence Tomography Biomarker for Progression in Age-Related Macular Degeneration             | retinal pigment epithelium, age-related macular degeneration, optical coherence tomography, drusen, hyperreflective foci, transdifferentiation, apoptosis, migration, Mie scattering, electron microscopy, stereology | Not applicable                                           | 142 maculas (53 advanced AMD, 13 GA eyes from 12 donors and 40 neovascular AMD eyes from 40 donors; 29 early AMD; 60 age-matched control eyes) | <ul style="list-style-type: none"> <li>Fifteen phenotypes of retinal pigment epithelial cell morphology in advanced age-related macular degeneration</li> <li>Retinal pigment epithelium phenotypes in spectral-domain optical coherence tomography</li> <li>Progression of RPE phenotypes in the transition to geographic atrophy</li> <li>Correlations between ex vivo SDOCT and high-resolution histology in drusenoid pigment epithelium detachment</li> <li>Histologically defined RPE features are visible in vivo</li> <li>RPE morphology and the life cycle of drusenoid pigment epithelial detachment (DPED)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 29 | Therapeutic Efficacy of a Novel Acetylated Tetrapeptide in Animal Models of Age-Related Macular Degeneration                                    | acetylated tetrapeptide (Ac-RLYE); neovascular age-related macular degeneration; resistance; retinal neovascularization; laser-induced CNV model; VEGF; VEGFR-2                                                       | Not applicable                                           | Six-week-old male C57BL/6J mice / By 532nm                                                                                                     | <ul style="list-style-type: none"> <li>The effects of the intravitreal administration of RLYE, the modified RLYE variants [R(D)LYE and Ac-RLYE], and aflibercept on the area of choroidal neovascularization (CNV) in laser-induced CNV mouse models</li> <li>The effects of the intravitreal administration of RLYE and Ac-RLYE on inhibition of retinal vascular leakage in streptozotocin (STZ) induced diabetic mouse models</li> <li>The effects of the intravitreal administration of Ac-RLYE and aflibercept on inhibition of choroidal neovascularization (CNV) rat models</li> <li>The effects of the intravitreal administration of Ac-RLYE and ranibizumab on inhibition of choroidal neovascularization (CNV) in laser-induced CNV rabbit models</li> <li>The effects of the intravitreal administration of Ac-RLYE and ranibizumab on inhibition of choroidal neovascularization (CNV) in laser-induced CNV minipig models</li> <li>The effects of the intravitreal administration of Ac-RLYE, ranibizumab, and aflibercept on inhibition of choroidal neovascularization (CNV) in laser-induced CNV rabbit models</li> </ul> |
| 30 | Wnt5a/β-catenin-mediated epithelial-mesenchymal transition: a key driver of subretinal fibrosis in neovascular age-related macular degeneration | Neovascular age-related macular degeneration, Subretinal fibrosis, Retinal pigment epithelium, Epithelial mesenchymal transition, Wnt5a/β-atenin                                                                      | FH535 (a β-atenin inhibitor)<br>Box5 (a Wnt5a inhibitor) | ARPE-19 cells<br>7-week-old male C57BL/6J mice / By 532nm                                                                                      | <ul style="list-style-type: none"> <li>Safety assessment of intravitreal administration of FH535 in C57 mice</li> <li>The effects of FH535 on subretinal fibrosis, EMT and CNV in laser-induced CNV mice</li> <li>The impact of intravitreal administration of FH535 or Box5 on Wnt-signaling, EMT and subretinal fibrosis in laser-induced CNV mice</li> <li>The influence of TGFβ1 on the Wnt-signaling molecules in ARPE-9 cells</li> <li>The impact of FH535 co-cultivation on the EMT and migratory capacity of ARPE-9 cells treated with TGFβ1</li> <li>The impact of Box5 (a Wnt5a antagonist) on the expression profiles of EMT-and Wnt signaling-related molecules, as well as its influence on the migratory capacity in TGFβ1-treated ARPE-9 cells</li> </ul>                                                                                                                                                                                                                                                                                                                                                                   |